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Many physicists take it for granted that their theories can be either refuted 
or verified by comparison with experimental data. In order to evaluate such 
data, however, one must employ statistical estimation and inference 
methods which, unfortunately, always involve an ad hoc proposition. The 
nature of the latter depends upon the statistical method adopted; in the 
Bayesian approach, for example, one must use some Lebesgue measure in 
the "set  of all possible distributions." The ad hoc proposition has usually 
nothing in common with the physical theory in question, thus subjecting its 
verification (or refutation) to further doubt. This paper points out one 
notable exception to this rule. It turns out that in the case of the quantum 
mechanical systems associated with finite-dimensional Hilbert spaces the 
proposition is completely determined by the premises of the quantum 
theory itself. 
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1. I N T R O D U C T I O N  

1.1. A Sketch of  the  Bayes M e t h o d  of  In ference  

C o n s i d e r  a f ini te  p r o b a b i l i t y  f ield m F g e n e r a t e d  by  r e l e m e n t a r y  even t s  e~, 

i = 1, 2, . . . ,  r. T h e  s imp les t  way  o f  de f in ing  the  p r o b a b i l i t y  f u n c t i o n  in F is to  

spec i fy  t he  p r o b a b i l i t i e s  p l ,  P2, . . . ,  Pr a s s o c i a t e d  w i t h  the  even t s  e l ,  e2,. . . ,  er, 
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respectively. This will be done by means of  an empir ical  selection process e: 
Suppose that  n selections (trials) have been made and write e(ek) for the 
outcome of  the kth trial. By definition, e(ek) c {e~; i = 1, 2 ..... r}. We assume 
that  the outcomes of  the individual trials are statistically independent so that 
the order in which they are performed is irrelevant. The only quantities of  
interest are then the frequencies n~, i = 1, 2,..., r, where n~ specifies how many 
times the event e~ occurs within the set {e(e~); k = 1, 2 ..... n}. We must  also 
assume that  the following reproducibili ty criterion holds true: For  n---> oo 
and for any i = 1, 2 ..... r the ratio n~/n converges and its limit is the same for 
any two infinite sequences of  trials. In this case we put p~ = lim(n~/n). 

The principal aim of  the Bayes theory ~2~ is the estimation o f  the proba-  
bilitiesp~ on the basis of  the empirical frequencies nl ,  n2 .... , nr. Because of  the 
limit transition involved, the exac t  values of  the probabilities are, however, 
inaccessible by any empirical method. Wha t  follows is a modern-language 
transcription of  the Bayes approach  to this problem. 

Let Er be an r-dimensional, real Euclidean space and let /5 e E,., 
/ 5 -  ( P l , P 2  .... ,p~), where the components  p~ are taken with respect to a 
fixed or thonormal  basis in Er. We are interested in the (r - 1)-dimensional 
simplex B s E~ defined by the conditions p~ >/ 0 for all i and Pl + P2 +""  
+ p~ = 1. In principle, the components  p l ,  P2,...,P~ of  any element/5 ~ B 
represent an acceptable set of  the probabilities o f  the events e~, e2 ..... er, 
respectively. 

Given the empirical frequencies B - {nl, n2 ..... n~}, we assign to every 
/5 ~ B the weight 

w~(/5) = (n !/nl ! n2 !""  nr !)/5~ (1) 

where n nl + n2 + . . - +  n~ and/5~ p~lp'~2 ~ . . . . .  p~. Evidently, w~(f) is the 
condit ional  probabil i ty that  n r andom trials will lead to the frequencies 
nl,  n~ .... , nr provided that  the probabili ty of  the event e~ is actually equal to p~ 
for all i. Equat ion (1) must  be modified in the case that, for some reason, 
different elements o f  B are not  supposed to be equally likely even prior to 
any empirical verification. Then 

w~(/5) = (n [In~ ! n2 ! ... nr !)/5~t~(/5) (2) 

where/x(/5) is the so-called a priori weight of  the element/5 e B. Since B is 
measurable, the weight w~(/5) can be normalized. This leads to a probabili ty 
density p(/5) in B: 

0~(/5) =/5~(/5)/f~/5%(/5) de (3) 

where de is the Cartesian surface element of  B. 
F rom the last equation it is evident that  the a priori weight /x(/5) is 
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intimately connected with the measure in B. Indeed, a slightly more rigorous 
t reatment  would show that/~ has to be ident i f ied  with a measure. Then Eq. (3) 
can be rewritten by means of  the Lebesgue integral 

(4) 

Advancing one step further, we ask the question: Given the empirical 
frequencies ~, what  is the probabili ty P~(~fi) that  m new trials will lead to the 
frequencies t~ = {m~, m2 .... , mr )?  Combining Eqs. (1) and (4), we obtain 

m ! fB/3(~ + ~)/z{dcr} 
P . ( m )  = (5) 

m l  ! m2 ! ' . .  mr ! f~/3~tz{do} 

This is the fundamental  Bayesian inference formula  for finite probabili ty 
fields. 

1.2 The Central  Impass of  Inference Theories 

The sore point  of  the Bayes method is the choice of  the measure/~{d~}. 
Since the following sections of  this paper must  be viewed in the light of  this 
basic problem, I will discuss briefly the historical attempts at its solution. 
Before doing so, however, it might be useful to demonstrate  the depth of  the 
problem by means o f  a simple example. 

Let us first put/x{d~} - /xB{d~} = d~. The measure/xB{d~} will be called 
"Bayes i an"  since it coincides with Bayes' own choice 3 in the special case 
he considered. Explicit evaluation shows (see Appendix A) that  in this case 

and 

d(/3) : r-l,2p.r(n + r ) / / I  r(n, + l) 
J ~ = i  

(6) 

Pff(r~) = n~ + m~ n + m + r -  1 (7) 
m~ m 

Our  second choice will seem a bit more complicated. Consider the unit 
sphere Sr in Er and denote its Cartesian surface element dr. Let us define a 
regular map J r  o f  Sr on the whole of  B by putt ing ~ =/3,  where p~ = x~ 2 
for all i = 1, 2 .... , r. Given any measure v{dz} on St, the mapping ~ defines a 
corresponding measure /x{dc~} = v{~-1  da} on B. We will choose v{d.r} = 
vS{d'r} = d~- and denote the corresponding measure on B as i~S{de}. This leads 

a It is also known as the Bayes postulate. See Ref. 3. 
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to (see Appendix B) 

p~(.~)~{d~} = p~(~) d~- (8) 

where s ~ St, t5 = ~ 2 ,  d~- = ~ - 1  d~, and 

p~-(x) = �89 + �89 P(n~ + �89 (9) 

Consequently, 

pS(rfi) = [ ~  (n~+m~- �89189  1 ) m ~  rn (10) 

The fact that the two measures lead to two different inference formulas 
eliminates the argument that the lack of any a priori knowledge justifies the 
use of a particular measure. Historically, this argument has often been used ~ 
to justify the Bayes choice. The intuitively appealing feature of such reasoning 
is the homogeneity of/xB{d~} with respect to translations along B (notice that 
B is a section of a hyperplane). But, on the other hand, the measure vS{dr} is 
isotropic on the sphere St. Considering the fact that the symmetry of S~ is 
substantially higher than that of  B, one's intuition might easily be tempted to 
switch sides. The problem is that the symmetry operations involved are purely 
abstract concepts with no empirical meaning. 

Von Mises proved that under certain conditions the effect of the choice 
of  the measure on the inference formula becomes negligible if n @ oe. 5 This 
theorem, however, does not really solve anything since it simply refers back 
to the limit transition on which the definition of the p~ has been based. 

Von Mises' later proposal ~6> was to look at the measure /x{dcr} as an 
empirical hypothesis based on the sum of our previous experience (history). 
There are a few facts which seem to support this idea. Thus, for example, the 
everyday statistical practice is based on the Bayesian measure /zB{&r}. I f  
normal distributions are supposed to appear only as limit cases and/or accu- 
mulation points of Bernoullian distributions, then any measure on B deter- 
mines a corresponding measure q~{da, ds} in the space of their location (a) and 
scale (s) parameters. The particular measure generated by t~S{d~} turns out 
to be homogeneous in the coordinates a and s 2, i.e., ~{da, ds} ocs da ds, and 
it is exactly this choice which leads to the universally used chi-square test. 
Our whole statistical experience (including the overall success of the insurance 
business) therefore indicates that, as a hypothesis, the Bayes choice is not 
unreasonable. It  is nevertheless evident that while this approach may satisfy 
a pragmatist, it does not lead to any absolute certainty either. After all, our 

4 A discussion of this problem appears in almost every monograph dealing with statistical 
inference. See, e.g., Refs. 4, 6-8. 

5 Most of yon Mises' excellent work on Bayesian problems appears in Ref. 7. Also see 
Ref. 6. 
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historical experience is limited and, even worse, we must sometimes face 
problems which are brand new to us. 

Mathematicians have for some time recognized the elusive nature of the 
problem and have solved it by simply ignoring it. (8~ The measure/~{d~} may 
vary from one class of empirical problems to another. Its estimation therefore 
belongs to the domain of empirical science. Since there does not exist any 
rigorous algorithm on which such an estimation could be based, the empiricist 
is forced to take refuge in an ad hoc proposition and to see whether his choice 
is satisfactory in the light of his growing experience. He must keep in mind, 
however, that "sat isfactory" is by no means identical with " t r u e "  or even 
"opt imal ."  There exists at least one extremely successful example of this kind 
of approach in science. Statistical mechanics of many-body systems is based on 
the assumption that the density operator of a system which is in a thermo- 
dynamic equilibrium equals exp(-00"r176 where ~ i s  the Hamiltonian and 0 
is a real number. This Boltzmann " l a w "  is in reality nothing more than an 
ad hoc choice of a weight function in the associated Liouville space. 

In the last  decade and a half there have appeared a number of new 
mathematical methods (9' 10~ which either reduce the sensitivity of the inference 
formulas to the choice of the measure or substitute the measure by sub- 
stantially weaker concepts. These efforts are undoubtedly very valuable but 
they still lead to the same conclusion: No mathematical inference from a set 
of empirical data is possible unless one is given some knowledge prior to and 
independent of the data. 

2. THE P H Y S I C I S T ' S  P O I N T  OF V I E W  

Physical methods apply to special classes of phenomena. Within each 
class there exists a model (theory) which implicitly determines the outcomes 
of all relevant observations and/or the correlations between such observa- 
tions. The physical theory is, however, just a hypothesis. In principle, many 
different and even conflicting theories may be successfully applied to the 
same class of phenomena. 

The outcomes of observations (data) are presumably independent of 
the physical model adopted. It does not follow, however, that the way the 
data are evaluated is also independent of the model. Since observations are 
never exact, statistical methods must be used for their evaluation. We have 
seen that this is possible only in connection with a special proposition such 
as the choice of the measure ~{d~} in the case of the Bayesian methods. This 
proposition becomes an integral part of the physical model. Vice versa, a 
physical theory is complete only if it includes a prescription for the evaluation 
of empirical data. 
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The relevant statistical proposition is most often just an independent 
appendix to the physical theory. In some cases (as in statistical physics) it 
may rely on the knowledge of quantities which have a meaning only within 
the particular theory. Final ly--and in the next section we are going to discuss 
a particular example of this case--i t  may become a consequence of the very 
premises of the physical theory and thus acquire the character of  a law. 

3. BAYES" M E T H O D  A N D  Q U A N T U M  T H E O R Y  

We will consider a quantum mechanical system with a finite-dimensional 
Hilbert space H. By the postulates of quantum theory, a measurement process 
(9 is described by means of an associated Hermitian operator (observable) (9. 
Two measurement processes are said to be compatible if the corresponding 
observables commute. Two different measurements can be carried out simul- 
taneously if and only if they are compatible. The set of all possible outcomes 
of the measurement process (9 coincides with the set of all distinct eigenvalues 
of (9. The measurement is said to specify the linear manifold in H belonging to 
the particular eigenvalue of (9. A set {(96; a = 1, 2 ..... k} of measurements is 
said to be complete if any two of them are compatible and if their outcomes 
specify a unique state, i.e., a unique element on t h e  unit sphere Cr in H. 
Denoting the dimension of H as r, it follows that the set {(9~; c~ = 1, 2,..., k} 
defines an empirical selection process on the ensemble el, e2,..., ~T, where 
the "events '  ~ represent the orthonormalized simultaneous eigenvectors of 
the operators (91, (92 , " ' ,  Oh:" 

I f  the system is in a state ~ c C~, then, in general, the outcome of the 
measurements {(96} may be any of the events ~1, g2 ..... ~ .  Quantum theory 
predicts only the probability p~ that the result of the " t r i a l "  will be ~: p~ = 
](g, ~)12, where (.,.) is the scalar product in H. This prescription defines a 
regular mapping ~ of C~ on B. 

Let cr be a measure on C~ (d~o is the Cartesian surface element of the 
r-dimensional complex sphere). The mapping 0' = ~//O defined by a unitary 
operator ~//transforms q~{dco} into a new measure q/{&o} = q~(~//t din} on C~. 
From the physical point of view, however, it makes no difference whether we 
transform the Hilbert space H while leaving unchanged the operators or leave 
H unchanged and transform all observables according to the formula (9' = 
d//(9o//*. Since the transformed observables {(g j}  define a new complete set of  
measurements, and since no such set is preferred to any other, this implies 
that q~{~/g &o} = ~o{doJ} for any unitary o~/. But there is only one fully isotropic 
measure and that is q~{dm} - ~oC{do~} = do~. 

Notice that our present ability to specify the measure is based on two 
facts: (i) The rotations in H now have a precise empirical interpretat ion--  
they describe the transitions from one complete set of measurements to 
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another; and (ii) all sets of measurements are considered equivalent in the 
sense that it is our choice which one will be adopted. If the second condition 
is modified, the whole argument falls. For example, if the knowledge of the 
energy of the system is made mandatory, then the set {O~} must include the 
Hamiltonian. The symmetry therefore disappears and the isotropic measure 
has to be replaced by another one. 

Any measure ~{&o} on C~ generates a measure/~{d~} = ~{~-~ d~} on B. 
The isotropic case leads to (see Appendix C) 

(11) 

where &o = .f~-i d~,/~ = ~ ,  and 

0;(e) = �89 + r)/~_~ r(n, + 1) (12) 

Here I~12~= rzll~nllz212%..IzrI2r~ , where z~ = (~,e0. Surprisingly, the 
inference formula resulting from this relation is identical with formula (7), 
i.e., 

p c ( m )  = P.~(r~) (13) 

4. F I N A L  R E M A R K S  

If we accept the thesis that experiment is the ultimate way of weighing 
the truth of a theory, then physical theories can be verified or refuted only in 
the statistical sense (that is, up to a certain significance level). From what has 
been said in Sections 1 and 2 it follows that, strictly speaking, no verification 
is possible unless the relevant inference method is an integral part of the 
theory. The merit of Section 3 consists primarily in the demonstration that 
such "comple te"  theories can be constructed. 

Formulas (11)-(13) represent the solution of the inference problem 
within the framework of quantum mechanics for the special case characterized 
by finite-dimensional Hilbert spaces. The fact that, after much calculation, 
the results are identical with the classical Bayes choice is very intriguing but 
it hardly provides sufficient ground for any far-reaching speculation. 

The generalization of the above results to the cases with infinite- 
dimensional Hilbert spaces presents the same kind of problems as the general- 
ization of the Bayes method to infinite probability fields. The main obstacle 
is the nonexistence of any Lebesgue measure in the spaces involved. This 
results in the necessity of introducing further ad hoc restrictions on the a 
priori weight function. It can not be excluded, however, that this problem 
will be eventually solved by quite different methods. 
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A P P E N D I X  A 

Write 

B~(t~; R) = ( p~"lp2"2 .. .p~r da (A.1) 
JB (n) 

where B ( R )  is the simplex lying in the ( r -  1)-dimensional hyperplane 
Q(R)  ~ {/3; Pl + P2 +""  + P~ = R} of  the r-dimensional Euclidean space Er 
and delimited by the inequalities p~ >/ 0, i = 1, 2 ..... r. We are especially 
interested in the quanti ty B~(~) = B~(~; 1). Applying the scaling t ransforma- 
t ion/3'  = R -  1/3, we find 

B~(ff; R) = R T M -  lB.(B) (A.2) 

where n = nl + n2 + . . . +  n~. 
Let ff be the vector perpendicular  to Q(R) ,  f f -  (r -~/2, r-~/2,. . . ,  r-1/2), 

and 0 the angle between ff and the r th coordinate  axis. Then, putt ing p~ = x, 
one can write (see Fig. 1A) 

Br(nl ,  n2 .... , n~) = s ~  x~TB~-l(nl ,  n2 ..... nr-1;  1 -- x )  dx  
(A.3) 

Since sin 0 = [(r - 1)/r] 1/2, Eqs. (A.2) and (A.3) combine to give 

B~(ni, n2 ..... nO = ~ - 1  B r - l ( n l ,  n2 ..... n~- l )  x",(1 - x)"-~T +r-2 dx 

= ~ - 1  B ~ - l ( n l ,  n2 ..... nr-1)fi(n~ + 1 , n  - n~ + r - 1 )  
(A.4) 

where fi(x, y) is the beta function. 
Putt ing Bl(n)  = 1, one obtains by induction 

B~(~) = rl/2L~=~I--[ V(n~ + l) F(n + r) (A.5) 

Combining this formula with Eqs. (4) and (5), one obtains the desired Eqs. 
(6) and (7), respectively. 

It is of  some interest to notice that  Eq. (A.5) is also valid for  noninteger 
n~ as long as n~ /> 0. 

A P P E N D I X  B 

Let 

fS 2nr Vr(~; R) = ~1"2n1"2"2~2 "'" xr dr  (S.1) 
(R) 
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Pz 

Fig. 1. (A) The simplex B for r = 3. The cut for B I P ~  
P3 = x = const is identical with the simplex B(R = 
1 - x) in the two-dimensional space of the cut. t7 is 
the unit vector perpendicular to B. (B) A schematic 
drawing of the unit sphere ST in an r-dimensional 
Euclidean space E~. The cut for p~ = cos 0 = const 
is a sphere of radius sin 0 in E~ ~. I 

where  s - (x l ,  x2 .... , x~) is a n  e l emen t  o f  the  r - d i m e n s i o n a l  Euc l i dean  space 
a n d  S ( R )  is the sphere {s xl  2 + x2 2 + . . .  + xr 2 = R2}. We  ac tua l ly  need  to 

de te rmine  on ly  the  q u a n t i t y  E ( g )  = V~(~; 1), which  is re la ted to V~(~; R) 

by  m e a n s  o f  the  scal ing t r a n s f o r m a t i o n  s  = R - ~ s  

(B.2) 

where  n = n~ + n2 + ' " +  nr. 

U s i n g  Eq.  (B.2), one  can  easi ly der ive  a n  i n d u c t i o n  f o r m u l a  for Vr(g) 

P u t t i n g  x ,  = cos 0, Vr(B) can  be rewr i t t en  as (see Fig.  1B): 

E ( n l ,  n2 .... , nr) = V r - l ( n i ,  n2 ..... nr-~;  [sin 0l)(cos 0)~nT-1 dO 

= fl(nr + �89 n - nr + �89 - � 8 9  n2 ..... n~-z)  (B.3) 

where  fi(x, y)  is the  be ta  func t ion .  

The  degenera te  case r = 1 requires  Vl(n) = 2 so that ,  by i nduc t i on ,  

V r ( ~ ) =  2[~__~ F(nr + � 8 9  + �89 (B.4) 

E q u a t i o n s  (9) a n d  (10) t hen  fol low s t r a igh t fo rward ly  f rom Eqs. (B.4), (4), a n d  
(5). S imi la r ly  as in the  case o f  Eq. (A.5),  f o r m u l a  (B.4) is val id  for  all  n o n -  

nega t ive  n~. 



26 Stanislav S~kora 

APPENDIX  C 

We want  to determine the value of  the integral 

w~(~) = yo, IZll~lz=l=%...iz, I ~, d~ (c.]) 

where ff = (zl ,  z2,..., z~) is an element of  the r-dimensional  complex Euclidean 
space Hr,  C~ - {~; [zl[ 2 + ]z212 + ' " +  tZr[ 2 = 1} is the unit  sphere in H, ,  
and &o is the Cartesian surface element on C,. 

Hr is i somorphic  to the 2r-dimensional,  real Euclidean space E2,; a 
part icular  i somorphism qb can be defined, for example,  by the relations 

X 2 i - 1  = Re z~, x2~ = I m  z{, i = l, 2,..., r (C.2) 

where 2 e Hr,  ff ~ E2,, and Re and Im denote the real and imaginary parts,  
respectively. Since (I) maps  Cr on the unit  sphere $2, in E2r and, by definition, 
(I)(&o) = dr,  where &- is the Cartesian surface element on $2~, Eq. (C.1) can 
be written as 

/ .  
Wr(n) = [ (Xl 2 -F x22)n1(x82 JF x42) lz2 ,.. (x2r_l -F X~r) r% dz 

2r 

(::I] 
x V=,(2ll, 2nl - 2 l l ,  21=, 2n= - 212 ..... 21,, 2nr - 21,) 

(C.3) 
Using Eq. (B.4), we have, further,  

n I nr 

Wr(FO = [2/P(n + r ) l  ~ :  "" 

Employing  the identity 

/ 1=0  l r = 0  

x c(n, + {)['(n~ - l~ + �89 
i = 0  l i  

(C.4) 

we arrive at the formula  

+ i)F(n + b - i) = /3(a ,  b)F(n + a + b) (C.5) 

W,(~) = 2 ~ r  ~ F(n~ + 1 ]:(n + r) 
Li=l 

(C.6) 
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